  +86-15658151051                          sales@xingultrasonic.com 
Product Details
Home / Products / Ultrasonic Sonochemistry / 20Khz Ultrasonic Liquid Processor with Explosion Proof for CLEANING CHEMICALS Defoaming

Product Category

Share to:

20Khz Ultrasonic Liquid Processor with Explosion Proof for CLEANING CHEMICALS Defoaming

Ultrasonic sonochemistry equipment applied in different liquid system such as homogenization, cell division, dispersion, degassing or extraction.
Frequency:
Power:
Material:
Generator :
Availability:
Quantity:
  • RPS-SONO20
  • Rps-sonic
  • RPS-SONO20

20Khz Ultrasonic Liquid Processor with Explosion Proof for CLEANING CHEMICALS Defoaming


What's the theory of ultrasonic sonochemistry? 

Sonochemistry, i.e. the chemical effects of ultrasound, originates in acoustic cavitation: nucleation, growth and implosion of gas bubbles in liquids submitted to an ultrasonic field. The implosion occurs on the microsecond time scale and the collapse induces extreme local conditions of several thousand degrees and several hundred of bar pressure, with high cooling rates (~1010 K s-1). Recent studies demonstrated the formation of non-equilibrium plasma inside the bubble at collapse. This local concentration of energy constitutes the origin of the light emission by the cavitation bubbles (sonoluminescence), of the chemical activity in the bulk and of the evolution of heterogeneous systems. Each cavitation bubble, having for example a resonance size of ~150 μm at 20 kHz, can be considered as a high-temperature microreactor allowing physico-chemical reactions to occur. It does not need specific reactants to be added and does not generate additional wastes, hence adhering to the "green chemistry" principles.


NO CHEMICAL ADDITIVES, TEMPERATURE REDUCTION OR MECHANICAL DEVICES ARE REQUIRED, ESPECIALLY DESIGNED FOR BEER, MILK, CARBONATE DRINKS AND CLEANING CHEMICALS PACKAGING LINES

Industrial processes have traditionally control foam through mechanical devices, decreasing tank temperature or adding chemical additives.  However, these procedures have the following limitations:

Decreased performance.

Quality problems.

Product losses due to waste.

Microbial contamination.

Production delays and stops.

Obstruction of channels and valves.

Flooding of air filters.

Malfunction of control devices



However, high power ultrasonic defoaming systems  have proven to be very effective using high power ultrasounds to disperse and control the foam. The creation of an ultrasonic static wave in the air generates nodes and anti-nodes.


The nodes attract matter and so the foam bubbles which implode as a result of the compression forces generated.

Parameter

Model

SONO20-1000

SONO20-2000

SONO15-3000

SONO20-3000

Frequency

20±0.5 KHz

20±0.5 KHz

15±0.5 KHz

20±0.5 KHz

Power

1000 W

2000 W

3000 W

3000 W

Voltage

220/110V

220/110V

220/110V

220/110V

Temperature

300 ℃

300 ℃

300 ℃

300 ℃

Pressure

35 MPa

35 MPa

35 MPa

35 MPa

Intensity of sound

20 W/cm²

40 W/cm²

60 W/cm²

60 W/cm²

Max Capacity

10 L/Min

15 L/Min

20 L/Min

20 L/Min

Tip Head Material

Titanium Alloy

Titanium Alloy

Titanium Alloy

Titanium Alloy




APPLICATION IN PACKAGING LINES


Foam Reduction Technology for Bottling & Canning Line Operations In The Beer Industry Delivering

Foam Reduction Technology for Beverage Bottle & CAN Filling Operations

Foam Reduction Technology for Dairy Bottle & CAN Filling Operations

Cleaning Chemicals Foam Compression Technology


Ultrasonic liquid processor




Sonochemical reactions

Three classes of sonochemical reactions exist: homogeneous sonochemistry of liquids, heterogeneous sonochemistry of liquid-liquid or solid–liquid systems, and, overlapping with the aforementioned, sonocatalysis (the catalysis or increasing the rate of a chemical reaction with ultrasound). Sonoluminescence is a consequence of the same cavitation phenomena that is responsible for homogeneous sonochemistry. The chemical enhancement of reactions by ultrasound has been explored and has beneficial applications in mixed phase synthesis, materials chemistry, and biomedical uses. Because cavitation can only occur in liquids, chemical reactions are not seen in the ultrasonic irradiation of solids or solid–gas systems.

For example, in chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold;[16] effectively acting to activate heterogeneous catalysts. In addition, in reactions at liquid-solid interfaces, ultrasound breaks up the solid pieces and exposes active clean surfaces through microjet pitting from cavitation near the surfaces and from fragmentation of solids by cavitation collapse nearby. This gives the solid reactant a larger surface area of active surfaces for the reaction to proceed over, increasing the observed rate of reaction. 

While the application of ultrasound often generates mixtures of products, a paper published in 2007 in the journal Nature described the use of ultrasound to selectively affect a certain cyclobutane ring-opening reaction. Atul Kumar has reported multicomponent reaction Hantzsch ester synthesis in Aqueous Micelles using ultrasound.

Some water pollutants, especially chlorinated organic compounds, can be destroyed sonochemically.

Sonochemistry can be performed by using a bath (usually used for ultrasonic cleaning) or with a high power probe, called an ultrasonic horn, which funnels and couples a piezoelectric element's energy int


See also

Ultrasound

Sonication

Ultrasonics

ultrasonic homogenizer

homogenizer

Homogenization (chemistry)

Sonoelectrochemistry

Kenneth S. Suslick


1. Can your sonochemistry horn be used in an acid (alkali) environment?

Under the acid (alkali) environment, the horn need to be customized according to the actual working conditions of customers.

 

2. Can the ultrasonic sonochemistry work continuously?

Yes , it can work 24hours continue.

 

3. What kind of material is the horn?

Titanium alloy, we also  customized ceramic horn for customer before.

 

4. What’s the time of delivery

 For Conventional horn, 3 days, for customized horn 7 work days.

 

5. Does ultrasonic extraction also require the addition of a chemical catalyst?

No , but some time need Mechanical stirring.

 

6. What’s the advantage of ultrasonic extraction?

Decline the extraction time, and increase the extraction ratio.

 

7. What’s the Processing capacity of one set ultrasonic extraction equipment?

Different horn different Processing capacity, for 2000W Nine-section whip horn can dealing 2L~10L/min.

 

8. Are you manufacturer?

We only manufacturer the transducer and generator our-self, for the horn , we design and buy raw material ,and process by other companies.

 

9. What’s the warranty of your sonochemistry equipment?

All equipment one year warranty.

 

10. Do you have Foreign agent?

No, our price already very low for everyone, no agent. We have OEM customer in USA and Germany.

 

11. Is it difficult to install the ultrasonic sonochemistry equipment?

No , it is easy , we will share Installation diagram, also can take install video for you.


Previous: 
Next: 
Get in touch

CATEGORIES

NAVIGATION

GET IN TOUCH

 Ms. Yvonne
  sales@xingultrasonic.com   
 0086-15658151051
   Room 1103B, Nature business building ,  NO.1160 GongWang Road ,FuYang, Hangzhou,Zhejiang,China

QR-CODE

© RPS-SONIC