  +86-15658151051                          sales@xingultrasonic.com 
Product Details
Home / Products / Ultrasonic Sonochemistry / 20Khz Ultrasonic Water Treatment System Sonochemical Reaction

Product Category



Share to:
sharethis sharing button

20Khz Ultrasonic Water Treatment System Sonochemical Reaction

Ultrasonic sonochemistry equipment applied in different liquid system such as homogenization, cell division, dispersion, degassing or extraction.
Generator :
  • RPS-SONO20

  • Rps-sonic

  • RPS-SONO20

20Khz Ultrasonic Water Treatment System Sonochemical Reaction

What's the theory of ultrasonic sonochemistry? 

Sonochemistry, i.e. the chemical effects of ultrasound, originates in acoustic cavitation: nucleation, growth and implosion of gas bubbles in liquids submitted to an ultrasonic field. The implosion occurs on the microsecond time scale and the collapse induces extreme local conditions of several thousand degrees and several hundred of bar pressure, with high cooling rates (~1010 K s-1). Recent studies demonstrated the formation of non-equilibrium plasma inside the bubble at collapse. This local concentration of energy constitutes the origin of the light emission by the cavitation bubbles (sonoluminescence), of the chemical activity in the bulk and of the evolution of heterogeneous systems. Each cavitation bubble, having for example a resonance size of ~150 μm at 20 kHz, can be considered as a high-temperature microreactor allowing physico-chemical reactions to occur. It does not need specific reactants to be added and does not generate additional wastes, hence adhering to the "green chemistry" principles.

Ultrasound can be used in chemistry to increase both reaction rates and yields of products. Most effects of ultrasound on chemical reactions are due to cavitation: the formation and collapse of small bubbles in the solvent. In this review, we first outline the physical background of cavitation, and discuss its dependence on factors such as sound intensity and frequency, solvent and temperature. The impact of ultrasound on chemical reactions is considered for homogeneous reactions and for heterogeneous liquid‐solid systems. The first area is mainly illustrated by a discussion of the effect of ultrasound on polymerization and depolymerization reactions, the second by selected examples in organic synthesis. The tendency of ultrasound to change reaction mechanisms in favour of homolytic (instead of heterolytic) pathways, is also briefly discussed. The specific preference for a particular pathway under sonochemical conditions, different from that under mechanical stirring has been termed “sonochemical switching”. Ultrasonic equipment for lab‐scale experiments are compared, and some practical “tricks and traps” are given.








20±0.5 KHz

20±0.5 KHz

15±0.5 KHz

20±0.5 KHz


1000 W

2000 W

3000 W

3000 W







300 ℃

300 ℃

300 ℃

300 ℃


35 MPa

35 MPa

35 MPa

35 MPa

Intensity of sound

20 W/cm²

40 W/cm²

60 W/cm²

60 W/cm²

Max Capacity

10 L/Min

15 L/Min

20 L/Min

20 L/Min

Tip Head Material

Titanium Alloy

Titanium Alloy

Titanium Alloy

Titanium Alloy


• Cell disrupter (extraction of plant substances, disinfecting, enzyme deactivation)

• Therapeutic ultrasound, i.e. induction of thermolysis in tissues (cancer treatment)

 Decrease of reaction time and/or increase of yield

• Use of less forcing conditions e.g. lower reaction temperature

• Possible switching of reaction pathway

• Use of less or avoidance of phase transfer catalysts

• Degassing forces reactions with gaseous products

• Use of crude or technical reagents

• Activation of metals and solids

• Reduction of any induction period

• Enhancement of the reactivity of reagents or catalysts

• Generation of useful reactive species

ultrasonic mixing

ultrasonic liquid processor

We need to customize according to your working conditions, liquid information, throughput, and spatial information....

So, before qutation, we may ask for many information about your application, like :

what's the liquid you dealing with?

what's the Temperature, pressure under work?

what's the capacity?

what's the inatll enviroment?


We have customized more than hundred ultrasonic liquid processing for different application.

Sonochemical reactions

Three classes of sonochemical reactions exist: homogeneous sonochemistry of liquids, heterogeneous sonochemistry of liquid-liquid or solid–liquid systems, and, overlapping with the aforementioned, sonocatalysis (the catalysis or increasing the rate of a chemical reaction with ultrasound). Sonoluminescence is a consequence of the same cavitation phenomena that is responsible for homogeneous sonochemistry. The chemical enhancement of reactions by ultrasound has been explored and has beneficial applications in mixed phase synthesis, materials chemistry, and biomedical uses. Because cavitation can only occur in liquids, chemical reactions are not seen in the ultrasonic irradiation of solids or solid–gas systems.

For example, in chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold;[16] effectively acting to activate heterogeneous catalysts. In addition, in reactions at liquid-solid interfaces, ultrasound breaks up the solid pieces and exposes active clean surfaces through microjet pitting from cavitation near the surfaces and from fragmentation of solids by cavitation collapse nearby. This gives the solid reactant a larger surface area of active surfaces for the reaction to proceed over, increasing the observed rate of reaction. 

While the application of ultrasound often generates mixtures of products, a paper published in 2007 in the journal Nature described the use of ultrasound to selectively affect a certain cyclobutane ring-opening reaction. Atul Kumar has reported multicomponent reaction Hantzsch ester synthesis in Aqueous Micelles using ultrasound.

Some water pollutants, especially chlorinated organic compounds, can be destroyed sonochemically.

Sonochemistry can be performed by using a bath (usually used for ultrasonic cleaning) or with a high power probe, called an ultrasonic horn, which funnels and couples a piezoelectric element's energy int

See also




ultrasonic homogenizer


Homogenization (chemistry)


Kenneth S. Suslick

1. Can your sonochemistry horn be used in an acid (alkali) environment?

Under the acid (alkali) environment, the horn need to be customized according to the actual working conditions of customers.


2. Can the ultrasonic sonochemistry work continuously?

Yes , it can work 24hours continue.


3. What kind of material is the horn?

Titanium alloy, we also  customized ceramic horn for customer before.


4. What’s the time of delivery

 For Conventional horn, 3 days, for customized horn 7 work days.


5. Does ultrasonic extraction also require the addition of a chemical catalyst?

No , but some time need Mechanical stirring.


6. What’s the advantage of ultrasonic extraction?

Decline the extraction time, and increase the extraction ratio.


7. What’s the Processing capacity of one set ultrasonic extraction equipment?

Different horn different Processing capacity, for 2000W Nine-section whip horn can dealing 2L~10L/min.


8. Are you manufacturer?

We only manufacturer the transducer and generator our-self, for the horn , we design and buy raw material ,and process by other companies.


9. What’s the warranty of your sonochemistry equipment?

All equipment one year warranty.


10. Do you have Foreign agent?

No, our price already very low for everyone, no agent. We have OEM customer in USA and Germany.


11. Is it difficult to install the ultrasonic sonochemistry equipment?

No , it is easy , we will share Installation diagram, also can take install video for you.

Get in touch




 Ms. Yvonne
  sales@xingultrasonic.com   
   Room 1103B, Nature business building ,  NO.1160 GongWang Road ,FuYang, Hangzhou,Zhejiang,China


© RPS-SONIC | Privacy Policy